FPGA Implementation of Rao-Blackwellized Particle Filter and Its Application to Sensorless Drive Control
نویسندگان
چکیده
Rao-Blackwellied particle filter is a stochastic filter combining Kalman filters with particle filters. It is suitable for models that could be decomposed into linear and nonlinear part. Since the conditionally linear part can be solved by the Kalman filter, the sequential Monte Carlo is run only on the non-linear subspace. The resulting algorithm is a parallel evaluation of multiple Kalman filters with resampling. The parallel nature of this algorithm allows for very efficient implementation in hardware supporting parallel computation processes. In this contribution, we present implementation of the algorithm in the Field Programmable Gate Array (FPGA). Due to the used model and optimized implementation, the execution time of the filter is in units of microseconds and scales very favorably with the number of particles. This is demonstrated experimentally on a laboratory prototype of sensorless drive with permanent magnet synchronous machine (PMSM) of rated power of 10.7kW.
منابع مشابه
Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملFixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کاملThe Rao-Blackwellized Particle Filter: A Filter Bank Implementation
For computational efficiency, it is important to utilize model structure in particle filtering. One of the most important cases occurs when there exists a linear Gaussian substructure, which can be efficiently handled by Kalman filters. This is the standard formulation of the Rao-Blackwellized particle filter (RBPF). This contribution suggests an alternative formulation of this wellknown result...
متن کاملA Rao-Blackwellized Mixed State Particle Filter for Head Pose Tracking
This paper presents a Rao-Blackwellized mixed state particle filter for joint head tracking and pose estimation. Rao-Blackwellizing a particle filter consists of marginalizing some of the variables of the state space in order to exactly compute their posterior probability density function. Marginalizing variables reduces the dimension of the configuration space and makes the particle filter mor...
متن کاملMonte Carlo smoothing with application to audio signal enhancement
We describe methods for applying Monte Carlo filtering and smoothing for estimation of unobserved states in a nonlinear state-space model. By exploiting the statistical structure of the model, we develop a Rao–Blackwellized particle smoother. Due to the lengthy nature of real signals, we suggest processing the data in blocks, and a block-based smoother algorithm is developed for this purpose. A...
متن کامل